Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
mBio ; : e0343621, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: covidwho-1632479

RESUMEN

The dynamics of SARS-CoV-2 infection in COVID-19 patients are highly variable, with a subset of patients demonstrating prolonged virus shedding, which poses a significant challenge for disease management and transmission control. In this study, the long-term dynamics of SARS-CoV-2 infection were investigated using a human well-differentiated nasal epithelial cell (NEC) model of infection. NECs were observed to release SARS-CoV-2 virus onto the apical surface for up to 28 days postinfection (dpi), further corroborated by viral antigen staining. Single-cell transcriptome sequencing (sc-seq) was utilized to explore the host response from infected NECs after short-term (3-dpi) and long-term (28-dpi) infection. We identified a unique population of cells harboring high viral loads present at both 3 and 28 dpi, characterized by expression of cell stress-related genes DDIT3 and ATF3 and enriched for genes involved in tumor necrosis factor alpha (TNF-α) signaling and apoptosis. Remarkably, this sc-seq analysis revealed an antiviral gene signature within all NEC cell types even at 28 dpi. We demonstrate increased replication of basal cells, absence of widespread cell death within the epithelial monolayer, and the ability of SARS-CoV-2 to replicate despite a continuous interferon response as factors likely contributing to SARS-CoV-2 persistence. This study provides a model system for development of therapeutics aimed at improving viral clearance in immunocompromised patients and implies a crucial role for immune cells in mediating viral clearance from infected epithelia. IMPORTANCE Increasing medical attention has been drawn to the persistence of symptoms (long-COVID syndrome) or live virus shedding from subsets of COVID-19 patients weeks to months after the initial onset of symptoms. In vitro approaches to model viral or symptom persistence are needed to fully dissect the complex and likely varied mechanisms underlying these clinical observations. We show that in vitro differentiated human NECs are persistently infected with SARS-CoV-2 for up to 28 dpi. This viral replication occurred despite the presence of an antiviral gene signature across all NEC cell types even at 28 dpi. This indicates that epithelial cell intrinsic antiviral responses are insufficient for the clearance of SARS-CoV-2, implying an essential role for tissue-resident and infiltrating immune cells for eventual viral clearance from infected airway tissue in COVID-19 patients.

2.
PLoS Pathog ; 16(12): e1009130, 2020 12.
Artículo en Inglés | MEDLINE | ID: covidwho-962381

RESUMEN

The novel coronavirus SARS-CoV-2 is the causative agent of Coronavirus Disease 2019 (COVID-19), a global healthcare and economic catastrophe. Understanding of the host immune response to SARS-CoV-2 is still in its infancy. A 382-nt deletion strain lacking ORF8 (Δ382 herein) was isolated in Singapore in March 2020. Infection with Δ382 was associated with less severe disease in patients, compared to infection with wild-type SARS-CoV-2. Here, we established Nasal Epithelial cells (NECs) differentiated from healthy nasal-tissue derived stem cells as a suitable model for the ex-vivo study of SARS-CoV-2 mediated pathogenesis. Infection of NECs with either SARS-CoV-2 or Δ382 resulted in virus particles released exclusively from the apical side, with similar replication kinetics. Screening of a panel of 49 cytokines for basolateral secretion from infected NECs identified CXCL10 as the only cytokine significantly induced upon infection, at comparable levels in both wild-type and Δ382 infected cells. Transcriptome analysis revealed the temporal up-regulation of distinct gene subsets during infection, with anti-viral signaling pathways only detected at late time-points (72 hours post-infection, hpi). This immune response to SARS-CoV-2 was significantly attenuated when compared to infection with an influenza strain, H3N2, which elicited an inflammatory response within 8 hpi, and a greater magnitude of anti-viral gene up-regulation at late time-points. Remarkably, Δ382 induced a host transcriptional response nearly identical to that of wild-type SARS-CoV-2 at every post-infection time-point examined. In accordance with previous results, Δ382 infected cells showed an absence of transcripts mapping to ORF8, and conserved expression of other SARS-CoV-2 genes. Our findings shed light on the airway epithelial response to SARS-CoV-2 infection, and demonstrate a non-essential role for ORF8 in modulating host gene expression and cytokine production from infected cells.


Asunto(s)
COVID-19/virología , Mucosa Nasal/virología , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Proteínas Virales/genética , Quimiocina CXCL10/inmunología , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Células Epiteliales/virología , Interacciones Huésped-Patógeno/fisiología , Humanos , Cinética , Mucosa Nasal/inmunología , Mucosa Nasal/metabolismo , Transcriptoma , Proteínas Virales/inmunología , Replicación Viral/fisiología
3.
Oral Oncol ; 113: 105033, 2021 02.
Artículo en Inglés | MEDLINE | ID: covidwho-843400

RESUMEN

BACKGROUND: The COVID-19 pandemic has swept across the globe with massive effects on health care systems as well as global economies. Enhanced testing has been put forward as a means to reduce transmission while awaiting the development of targeted therapy or effective vaccination. However, achieving accurate testing necessitates proper nasopharyngeal swab techniques. METHODS AND RESULTS: We aimed to design and investigate the utility of an anatomically accurate three-dimensional (3D) printed model of the nose in the training for nasopharyngeal swabs. These models were implemented during training sessions for healthcare workers. All participants surveyed felt that the 3D printed models were useful and beneficial in the training of nasopharyngeal swab techniques. CONCLUSIONS: 3D printed nose models are a useful tool in nasopharyngeal swab training. Their usage may help to facilitate the training of potential swabbing manpower in the upscaling of testing capabilities and volumes in this COVID-19 era.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , COVID-19/epidemiología , Pruebas Diagnósticas de Rutina/métodos , Imagenología Tridimensional/métodos , Nasofaringe/virología , Nariz/anatomía & histología , Pandemias , SARS-CoV-2 , Manejo de Especímenes/métodos , COVID-19/virología , Personal de Salud/educación , Humanos , Impresión Tridimensional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA